AP Calculus AB PRACTICE Sheet 6

Dr. Paul Bailey Wednesday, October 4, 2017

Write all subsets of \mathbb{R} as the union of disjoint intervals or finite sets.

Problem 1. (Domain) Let $f(x) = \sqrt{9 - x^2}$. Find the domain and range of f.

Problem 2. (Limits) Let $f(x) = \frac{x^3 - 7x^2 - x - 56}{x^2 - 9x + 8}$. Find $\lim_{x \to 8} f(x)$.

Problem 3. (Polynomials) Consider the polynomial function

$$g(x) = 12x - x^3.$$

Find the zeros and intercepts of g, and sketch its graph.

Problem 4. (Domain of Composition) Let $f(x) = \sqrt{x+3}$ and $g(x) = \frac{1}{x-5}$. Find dom $(g \circ f)$ and dom $(f \circ g)$.

Problem 5. (Derivatives) Let $f(x) = x^5 - 2x^4 + 3x^3 - 5x^2 + 7x - 11$. Find f'(x).

Problem 6. (Derivatives) Let $f(x) = \frac{3}{x} + 5\sqrt{x} + 7\sin x + 11e^x$. Find f'(x).

Problem 7. (Domain) Let $f(x) = \sqrt{x^2 - 2x - 15}$. Find dom(f).

Problem 8. (Range) Let $g(x) = x^2 - 14x + 100$. Find range(g).

Problem 9. (Limits) Let $f(x) = \frac{x^3 - 16x^2 + 57x - 22}{x^2 - 4x - 77}$. Find $\lim_{x \to 11} f(x)$.

Problem 10. (Continuity) Let

$$f(x) = \begin{cases} 25 - x^2 & \text{for } x \le 3\\ (x - c)^2 & \text{for } x > 3 \end{cases}$$

Suppose f is continuous. Find all possible values for c.

Problem 11. (Tangents) Let $g(x) = x^3 - 7x + 3$. Find the equation of the line tangent to the graph of g at x = 2.

Problem 12. (Piecewise Limits) Let

$$f(x) = \begin{cases} \sqrt{x+3} & \text{for } x < 6\\ 0 & \text{for } x = 6\\ 25 - x^2 & \text{for } x > 6 \end{cases}$$

Find $\lim_{x\to 6^-} f(x)$ and $\lim_{x\to 6^+} f(x)$.

Problem 13. (Piecewise Continuity) Let

$$f(x) = \begin{cases} x^2 + k & \text{for } x < 2\\ x + 5 & \text{for } x \ge 2 \end{cases}$$

Find the value for k such that $\lim_{x\to 2} f(x)$ exists.

Problem 14. (Theory)

Reproduce the proof given in class that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, and use it to show that $\frac{d}{d\theta} \sin \theta = \cos \theta$.

Problem 15. (Theory)

Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. We have discussed why $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x-h) - f(x)}{-h}$. Use this fact, and the definitions of even and odd functions, to show that if f is an odd function, then f' is an even function.

Problem 16. (Wrapping Function) Let $W : \mathbb{R} \to \mathbb{R}^2$ be the wrapping function.

- (a) Find $W\left(\frac{79\pi}{6}\right)$.
- (b) Let $F(t) = W(2\pi t)$. Find $F\left(\frac{51}{12}\right)$.
- (c) Find all $t \in \mathbb{R}$ such that W(t) = (x, y) and x = y.

Problem 17. (Rational Limits) Compute the limit.

(a)
$$\lim_{x \to 2} x^2 - 3x - 40$$

(b) $\lim_{x \to 2} \frac{x^2 - 3x - 40}{x - 5}$
(c) $\lim_{x \to 5} \frac{x^2 - 3x - 40}{x - 5}$
(d) $\lim_{x \to 8} \frac{x^2 - 3x - 40}{x - 8}$

(e)
$$\lim_{x \to \infty} \frac{x^2 - 3x - 40}{x^2 - 8}$$

Problem 18. (Math Facts)

Let a and C be constants, and let u and v be functions of x.

(1)
$$\frac{d}{dx}C =$$
 _____ (constant rule)

(2)
$$\frac{d}{dx}(u+v) =$$
 _____ (sum rule)

(3)
$$\frac{d}{dx}(au) =$$
 _____ (constant multiple rule)

(4)
$$\frac{d}{dx}x^n =$$
 _____ (power rule)

$$(5) \quad \frac{d}{dx}\sqrt{x} = \underline{\qquad}$$

$$(6) \quad \frac{d}{dx} \frac{1}{x} = \underline{\qquad}$$

(7)
$$\frac{d}{dx}\sin(x) =$$

(8)
$$\frac{d}{dx}\cos(x) =$$

$$(9) \quad \frac{d}{dx} e^x = \underline{\qquad}$$

$$(10) \quad \frac{d}{dx} \ln x = _$$

Problem 19. (Graphing Polynomials) Consider the polynomial function $f(x) = x^4 - 5x^2 + 4$. Find its degree, leading coefficient, constant coefficient, zeros, and end behavior. Find the *y*-intercept and *x*-intercepts. Graph the function and label these points.

	Polynomial: $f(x) = x^4 - 5x^2 + 4$ Degree:Leading Coefficient:Constant Coefficient:Zeros:y-intercept:x-intercepts:End Polynomial
	· _
- - - -	End Behavior:

Problem 20. (Graphing Rational Functions) Consider the rational function $f(x) = \frac{3x^2 - 12}{x^2 - 9}$. Find its degree, zeros, and poles. Find its intercepts and asymptotes. Graph the function and label these features.

Degree: Zeros: Poles: y-intercept: x-intercepts: Vertical Asymptotes: Polynomial Asymptote:	12)
---	-----